Ischemia-reperfusion injury in rat skeletal muscle assessed with T2-weighted and dynamic contrast-enhanced MRI.
نویسندگان
چکیده
Pressure ulcers are localized areas of soft tissue breakdown due to mechanical loading. Susceptible individuals are subjected to pressure relief strategies to prevent long loading periods. Therefore, ischemia-reperfusion injury may play an important role in the etiology of pressure ulcers. To investigate the inter-relation between postischemic perfusion and changes in skeletal muscle integrity, the hindlimbs of Brown Norway rats were subjected to 4-h ischemia followed by 2-h reperfusion. Dynamic contrast-enhanced MRI was used to examine perfusion, and changes in skeletal muscle integrity were monitored with T2-weighted MRI. The dynamic contrast-enhanced MRI data showed a heterogeneous postischemic profile in the hindlimb, consisting of areas with increased contrast enhancement (14-76% of the hindlimb) and regions with no-reflow (5-77%). For T2, a gradual increase in the complete leg was observed during the 4-h ischemic period (from 34 to 41 msec). During the reperfusion phase, a heterogeneous distribution of T2 was observed. Areas with increased contrast enhancement were associated with a decrease in T2 (to 38 msec) toward preischemic levels, whereas no-reflow areas exhibited a further increase in T2 (to 42 msec). These results show that reperfusion after prolonged ischemia may not be complete, thereby continuing the ischemic condition and aggravating tissue damage.
منابع مشابه
The effects of deformation, ischemia, and reperfusion on the development of muscle damage during prolonged loading.
Deep tissue injury (DTI) is a severe form of pressure ulcer where tissue damage starts in deep tissues underneath intact skin. In the present study, the contributions of deformation, ischemia, and reperfusion to skeletal muscle damage development were examined in a rat model during a 6-h period. Magnetic resonance imaging (MRI) was used to study perfusion (contrast-enhanced MRI) and tissue inte...
متن کاملColchicine protects rat skeletal muscle from ischemia/reperfusion injury by suppressing oxidative stress and inflammation
Objective(s): Neutrophils play an important role in ischemia/reperfusion (IR) induced skeletal muscle injury. Microtubules are required for neutrophil activation in response to various stimuli. This study aimed to investigate the effects of colchicine, a microtubule-disrupting agent, on skeletal muscle IR injury in a rat hindlimb ischemia model. Materials and Methods: Twenty-one Sprague-Dawley ...
متن کاملMitochondria‐targeted antioxidant MitoQ reduced renal damage caused by ischemia‐reperfusion injury in rodent kidneys: Longitudinal observations of T 2‐weighted imaging and dynamic contrast‐enhanced MRI
PURPOSE To investigate the effect of mitochondria-targeted antioxidant MitoQ in reducing the severity of renal ischemia-reperfusion injury (IRI) in rats using T2 -weighted imaging and dynamic contrast-enhanced MRI (DCE-MRI). METHODS Ischemia-reperfusion injury was induced by temporarily clamping the left renal artery. Rats were pretreated with MitoQ or saline. The MRI examination was performe...
متن کاملEffects of normobaric hyperoxia pretreatment on ischemia-reperfusion injury in regional ischemia model of isolated rat heart
Abstract Introduction: Resent studies have been shown beneficial effects of hyperoxia pretreatment against ischemia-reperfusion injury in different organs. The aim of the present study was to investigate early and late effects of normobaric hyperoxia (≥95% O2) pretreatment on ischemia-reperfusion injuries in isolated rat hearts. Methods: Following 60 and 180 minutes of hyperoxia, rat hearts w...
متن کاملDynamic Changes in Blood-Brain-Barrier permeability after transient focal cerebral ischemia in rats
C-Y. Lin, H-W. Chen, Y-Y. Tung, W-M. Cheung, T-N. Lin, C. Chang Institute of Biomedical Sciences,Academia sinica, Taipei, Taiwan Synopsis The association of CBF and CBV with angiogenesis after transient focal cerebral ischemia has been documented. However, the relationship between the changes in cerebral hemodynamics and disruption of blood-brain barrier (BBB) permeability, which is a possible ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Magnetic resonance in medicine
دوره 66 2 شماره
صفحات -
تاریخ انتشار 2011